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Abstract

Context: There have been two coronavirus-related pandemics during the past 18 years, including severe acute respiratory syndrome
(SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV in 2002 and 2012, respectively. In 2019, Seven years after the emergence
of MERS, a new coronavirus (i.e., SARS-CoV-2) was detected in several patients. SARS-CoV-2 spread widely, and its high prevalence
enabled the virus to start a new pandemic in 2020. It is believed that the higher infectivity of the virus in comparison to that of
SARS-CoV is related to its molecular interaction affinity of transmembrane spike glycoprotein and human angiotensin-converting
enzyme 2 (ACE-2) cell receptors. Moreover, the primary reason for the high case fatality rate (CFR) is the cytokine storm and acute
respiratory distress syndrome (ARDS) because of the immune system response to the invaders. Hence, a solid understanding of the
components involved in the mechanism of viral entry and immune system response is crucial for finding approaches to disrupt the
virus-cell interplay and neutralizing its impacts on the host immune system. In this review, we investigated the molecular aspect
and potential therapeutic targets associated with cell receptors and downstream signaling cascades.
Evidence Acquisition: A systematic search was implemented on several online databases, including Google Scholar, PubMed, and
Scopus during 2019-2021 using the following keywords: "SARS-CoV-2", "COVID-19", "ACE-2", "Therapeutic Targets", "Acute respiratory
distress syndrome", and "Cytokine Storm".
Results: Various internal or external agents are responsible for the virus infectivity and stimulating acute immune system response.
Since currently there is no cure for the treatment of COVID-19, several repurposed drugs can be employed to disrupt the process of
viral entry and mitigate the symptoms raised by the cytokine storm. Inhibition of several agents, including signal transduction
mediators and TMPRSS2 may be momentous.
Conclusions: Despite the increase in the CFR, no drugs were developed with significant efficacy. Understanding the virus entry
mechanism and the immune system’s role could help us surmount the problems in developing a promising drug or employing the
repurposed ones.

Keywords: Coronavirus Infections/Drug Therapy, Serine Proteinase Inhibitors, SARS-CoV-2, Angiotensin-Converting Enzyme
Inhibitors, Cytokine Storm, Acute Respiratory Distress Syndrome

1. Context

In December 2019, several patients suffering from
pneumonia were admitted to a hospital in Wuhan, China.
Subsequently, they were diagnosed with a new coronavirus
disease, i.e., COVID-19, which had spread to more than 170
countries all around the world. By the time this draft
was being revised (May 2021), over 150 million cases and
three million deaths were confirmed globally by the World
Health Organization (WHO) (approximately 2.1% case fa-
tality rate [CFR]) (1, 2). The CFR of COVID-19 is consider-

ably lower than that of severe acute respiratory syndrome
(SARS) (approximately 9.5%) and much less than Middle
East respiratory syndrome (MERS) (around 35%) (3). To com-
pare the similarity of the three viruses, next-generation se-
quencing (NGS) analysis of the specimen containing SARS-
CoV-2 has shown 79 and 50% sequence homology to SARS-
CoV and MERS-CoV, respectively (4). The difference in se-
quence homology is partially associated with how these
viruses enter the host cells. With this in mind, both
SARS-CoV and SARS-CoV-2 exploit angiotensin-converting
enzyme 2 (ACE-2) receptor, while MERS-CoV employs dipep-
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tidyl peptidase 4 (DPP4, also known as CD26) (5-7). The
binding of the spike glycoproteins of SARS-CoV-2 (2SP) to
ACE-2 enables the process of cell entry (8, 9).

As most viruses, including coronaviruses, are generally
dependent on the host cells to replicate and further the
progression, the cytokine storm is being exploited to de-
stroy the cells and the occurrence of multi-organ failure.
The expression balance of transcription factors associated
with the pro-inflammatory cytokines in non-infected cells
gets lost when SARS-CoV-2 enters the cells. Subsequently, it
utilizes the host cells’ enzymes, and the cells undergo an
imbalanced situation, leading to organ failure (10, 11).

Several years since the outbreak of SARS and MERS, no
particular cure has yet been found (12, 13). That is to say, the
absence of a promising drug to eliminate COVID-19 is pro-
foundly felt. This review investigated the potential targets
for the treatment of SARS-CoV-2, including ACE-2 and other
key molecules contributing to SARS-CoV-2 infection. The
importance of these molecules in COVID-19 was somewhat
clarified in previously published articles. But the focus on
the employment of novel and repurposed drugs was ham-
pered as a result of the vague aspects to the signalling pro-
cess of these elements. Several potential targets are intro-
duced to be further analyzed for the treatment of COVID-19.

2. Evidence Acquisition

In this review, a literature search was implemented in
English from 6 October 2019 to 2 May 2021. The search
was performed in electronic databases, including PubMed,
Scopus, and Google Scholar. In the present review, accord-
ing to the medical subject heading (MeSH) criteria, the fol-
lowing keywords were used: "SARS-CoV-2", "COVID-19", "ACE-
2", "Therapeutic Targets", "Acute Respiratory Distress Syn-
drome", and "Cytokine Storm."

3. Results

3.1. SARS-CoV-2 Structure and Pathogenicity

SARS-CoV-2 and SARS-CoV belong to the lineage B of the
betacoronavirus genus, while MERS-CoV is from the lin-
eage C of the same genus (14). The genome of beta coro-
naviruses is about 30 kb, which generally contains six to 10
genes. The first gene is associated with transcription and
duplication, and the other remaining genes code for struc-
tural proteins (15). Spike protein is a major structural pro-
tein of SARS-CoV-2, along with envelope (E), nucleocapsid
(N), and membrane (M) proteins. There are other proteins,
including around 16 nonstructural and five to eight acces-
sory proteins (16). Before the viral assembly, most of the
viral proteins, specifically N proteins, are in the endoplas-
mic reticulum-Golgi region. Since there is a connection be-
tween this complex and nucleic acid content, it is believed

that N protein is associated with the viral replication cycle.
M protein forms the structure of the virus by acting as a
platform for stabilizing the complex when other proteins
are bound to it. The smallest structural protein, i.e., E pro-
tein, is responsible for developing newly replicated viruses
(17).

It was suggested that the process of viral entry through
ACE-2 receptor takes place by two various pathways. The
distinction of these two pathways is defined by the process
of 2SP priming, either with transmembrane serine pro-
teases or endosomal cysteine proteases (18).

The pathogenicity of SARS-CoV-2 mostly relies heavily
on the activity of 2SP as the initiator of binding to the host
cells. Its role is crucial for the virus, and therefore, it is
considered as the main target for inhibition of SARS-CoV-
2 pathogenesis (19).

3.2. Host Cell Receptors and Associated Proteins

Several receptors have been thought to be participat-
ing in the process of SARS-CoV-2 cell entry. The entangled
host cell receptor proteins could serve as potential drug
targets.

3.2.1. The Proteins Involved in SARS-CoV-2 Cell Entry via ACE-2
Receptor

In coronaviruses, S glycoprotein is mainly involved in
infecting the host cells. The variation of S glycoprotein
among different species of the Betacoronavirus determine
the pathogenicity of different members (20). Since SARS-
CoV-2 cell entry depends on the binding of 2SP to ACE-2 re-
ceptors, the availability and number of ACE-2 receptors are
the key factors for furthering the process of infection in
alveolar cells (21). ACE-2 receptor distribution in other or-
gans, including the heart, kidney, and intestine, may justify
the multi-organ dysfunction in severe COVID-19 cases (22).

The 2SP has two subunits, S1 and S2. The binding of
the former to the ACE-2 cell receptor is an essential step for
SARS-CoV-2 cell entry. Subsequently, the fusion takes place
by the activity of the S2 subunit (19). In terms of domain
numbers, the structure of the S1 subunit is analogous to
that of S2 (S1 trimer is located on top of S2 trimer). More-
over, each of its domains has its receptor-binding domain
(RBD), which contains the receptor-binding motifs (RBM)
that primarily account for docking to the cell receptors.
Previously, two relatively stable conformations acquired
by the S1 domain B in 2SP were detected by cryoelectron mi-
croscopy (cryo-EM). Either one domain has open RBD, and
the other two are in a closed state, or all three RBDs are en-
closed, resulting in evasion of the binding site from the im-
mune system. This finding somewhat clarified the vague
aspect of the spike RBD inhibitors not being entirely effec-
tual (23).
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To that end, cysteine and serine proteases (Cathepsin B
and L (CatB/L) and TMPRSS2, respectively) prime S protein
by cleaving different S protein sites (Figure 1) (24). It also
has been declared that in comparison with other coron-
aviruses, the availability of a leading proline residue influ-
ences the cleavage loop exposure in a way that the turn cre-
ated by the proline enhances the activity of the proteases
(25).

Inhibition of TMPRSS2 and Cat B/L molecules is associ-
ated with hampering SARS-CoV-2 cell entry by inhibiting vi-
ral fusion (22, 26). It was shown that, in TMPRSS2-negative,
ACE-2 expressing cells, while Cat B and L are blocked, SARS-
CoV-2 cell entry is completely disrupted. However, in TM-
PRSS2 positive cells, the inhibition happens with lower ef-
ficiency. Since the expression of TMPRSS2 alone is enough
for infectivity of SARS-CoV-2, protease activity of CatB/L is
dispensable for SARS-CoV-2 infection (19, 27). Hence, avail-
able drugs that inhibit the activity of TMPRSS2 could be
used as potential therapeutic options. In an in-silico study,
two drugs (Rubitecan and Loprazolam) were found to act
against TMPRSS2 by structure-based virtual screening. Fur-
thermore, the value of binding energy was measured for
these two drugs; the results suggested that Rubitecan is
more stable than Loprazolam (binding free energy was cal-
culated using the CaFE tool) (28).

Because the sequence homology of SARS-CoV and SARS-
CoV-2 is slightly more than 70% and both use ACE2 for cell
entry, the mechanism by which they enter the cells is more
or less the same. However, investigating the spike protein
of SARS-CoV led to the discovery of leading structural dif-
ferences that affect the infectivity of SARS-CoV-2. By homol-
ogy modeling, it was shown that in SARS-CoV-2, the inter-
action of ACE-2 and four specific residues in the receptor-
binding domain (located in the S1 subunit) of 2SP is elimi-
nated compared to that of SARS-CoV S. Instead, four other
residues establish new interactions. What is more, a salt
bridge existing between the SARS-CoV RBD and ACE-2 is sub-
stituted with a new salt bridge in SARS-CoV-2 (29). In an-
other study, it was indicated that considering the complex
structure of the SARS-CoV-2 spike C terminal domain, most
of the binding sites overlay with SARS-CoV (30). In other
studies on SARS-CoV RBD, it is suggested that RBD consists
of a core and a receptor-binding motif (RBM) and the S
protein interacts with ACE-2 via the RBM. There are two
hotspots in ACE-2 that are crucial for their interaction. It
was shown that several mutations in the RBM enclose these
hotspots, which may justify the difference in the infectivity
of SARS-CoV to that of SARS-CoV-2 (31, 32).

3.2.2. ACE-2 and IL-6 Receptors: Impact on the Cytokine Storm
in the Opposite Direction

Angiotensin 2 (AngII) is a cytokine accountable for con-
traction in blood vessels and inflammation by activating

intermediate molecules using angiotensin receptor type
I (AT1R). Normally, ACE-2 inactivates AngII, but the occu-
pancy of ACE-2 receptors by S proteins results in escalation
in the AngII level in serum. Moreover, AT1R is associated
with the expression of ADAM17 (A Disintegrin and Metallo-
proteases 17) protein, which acts by cleaving ACE-2 recep-
tors and solubilizing them, resulting in inhibition of ACE-2
mediated AngII degradation (33, 34). Thereupon, the AT1R-
AngII axis activates NF-κB via phosphorylation of its P65
subunit (35).

In another axis, SARS-CoV-2 itself activates NF-κB with
the help of pattern recognition receptors (PRRs), leading to
an increasing number of IL-6, TNFα, and IL-10 (36). IL-6 is an
inflammation mediator which acts by prompting JAK/STAT
pathway. The increased production of IL-6 enhances the
binding of IL-6 to its receptors (IL-6R). IL-6 acts through
binding to two different receptors, transmembrane recep-
tor (mIL-6R) and soluble receptor (sIL-6R), which is the
cleaved form of mIL-6R dissociated by ADAM17 (37). Pro-
vided that if it binds to mIL-6R or sIL-6R, classic signaling
and trans-signaling pathways activate, respectively. The
types of cells that express mIL-6R are limited, and due to
the availability of soluble IL6 receptors everywhere in the
body, the trans-signaling pathway is considered to be asso-
ciated with cytokine storm, especially in acute respiratory
distress syndrome (ARDS) (Figure 1) (37, 38).

As IL-6 binds to the soluble receptor, the complex in-
teraction with gp-130, glycoprotein 130, enables the Janus
kinase to activate signal transducer and activator of tran-
scription 3 by phosphorylation (JAK/STAT3 pathway). Ac-
cordingly, the STAT3 transcription factor stimulates the ex-
pression of inflammatory cytokines. ARDS is promoted by
the initiation advancement of the cytokine storm and cor-
responding cascade (37-39).

Accordingly, the use of IL-6R antagonists may be of
great importance as it can hamper the cytokine storm me-
diated by the IL-6/IL6R complex. The monoclonal anti-
bodies targeting each component of the IL-6/IL-6R com-
plex, including Siltuximab (IL-6 inhibitor), Sarilumab, and
Tocilizumab (IL-6R inhibitors), have been suggested for the
treatment and mitigation of ARDS symptoms (10, 11). Other
agents, including JAK/STAT inhibitors, can interrupt STAT
phosphorylation by targeting JAK. Baricitinib is one of the
JAK inhibitors currently being investigated for its efficacy
and efficiency against COVID-19 (38). Moreover, ruxolitinib,
memolitinib, oclacitinib, fedratinib, gandotinib, and pa-
critinib are other JAK inhibitors, some of which are under
clinical trials and may be effective to be employed as agents
in combination therapy (40).
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Figure 1. The Process of Inducing ARDS by 2SP. This figure illustrates that in the presence of SARS-CoV-2, its spike glycoprotein binds to the active site of the ACE-2 receptor
and prevents the binding of AngII. Also, ACE-2 is cleaved as a process of AT1R-mediated ADAM17 upregulation, resulting in the accumulation of AngII in serum, which in
turn activates the NF-κB pathway. SARS-CoV2 also activates IL-6 production via the NF-κB pathway. IL-6 activates JAK/STAT pathway via transmembrane and soluble IL6R. The
activated STAT dimers act as transcription activators and induce the expression of pro-inflammatory cytokines. The process ends in ARDS.

3.2.3. Basigin/CD147: A Contributing Receptor for SARS-CoV-2
Cell Entry or Misidentified as a Therapeutic Target?

Basigin (CD147) is a glycoprotein of the immunoglobu-
lin superfamily and is accountable for cancer cell develop-
ment and enhances viral infections in host tissue (41).

Chen et al. (2005) indicated the importance of Basi-
gin as an enhancer of SARS-CoV invasion (42) and tested
and confirmed the interaction of 2SP and Basigin using sur-
face Plasmon resonance and Co-IP assays. Considering the
acquired results, they proposed a new potential route for
SARS-CoV-2 cell entry, employing Basigin as the associated
receptor (41). Several drugs, including Meplazumab, have
been suggested to block Basigin, and some of them are be-
ing tested in clinical trials (43, 44).

On the other hand, there is controversy if Basigin has
significant roles in SARS-CoV-2 cell entry. According to
Shilts et al., utilizing Basigin inhibitors as therapeutic op-
tions against COVID-19 is not impeccable. They analyzed
the binding interaction of 2SP and CD147. Peculiarly, they
found no direct interaction between them, pointing to the
need for a thorough analysis of its nature before perform-

ing clinical trials (45).

3.2.4. CD209L/L-SIGN

L-SIGN (aka CD209L) and DC-SIGN (AKA CD209) recep-
tors belong to the C-type lectin superfamily and are con-
sidered as activators of immune response to infectious
agents, including mycobacterium tuberculosis (46). On
the contrary, they mediate the advancement of the infec-
tion and evasion of these pathogens from the immune sys-
tem, presenting their nature as a double-edged sword. The
positive consequence potential of these two receptors is
thought to rely on the type of tissue they are expressed
in (47). The former is mainly present in dendritic cells
and macrophages and the latter in pulmonary endothelial
cells and other distinct tissue types. Since both SARS-CoV
and SARS-CoV-2 primarily infect alveolar cells, L-SIGN exerts
more influence (46).

Previously, the impact of receptors other than ACE-2 on
viral cell entry was suggested (especially L-SIGN in SARS-
CoV infection) (48). On that basis, research was carried
out to investigate the interaction of 2SP with L-SIGN. It was
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shown that L-SIGN interacts with 2SP-RBD, implying the po-
tential of C-type lectin receptors in the facilitation of SARS-
CoV-2 cell entry. Furthermore, the application of soluble
CD209L was reported to disrupt this process (49).

4. Conclusions

Considering the absence of a reliable drug, it is cru-
cial to detect COVID-19 infection in suspected cases to pre-
vent further transmissions. Antiviral drugs may be some-
what efficacious against SARS-COV-2, but their solo use for
treatment is not efficient enough. Thereby, blocking the
agents in the host-SARS-CoV-2 interactome, including TM-
PRSS2 and signal transducers may greatly reduce its infec-
tivity and fatality. In light of various therapeutic options
for treating viral infections, including repurposed drugs,
the potential for achieving a tangible result for treatment
is still considerable.
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