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Abstract

Introduction: Muscular dystrophy is a hereditary degenerative muscle disease which progressively reduces the strength of the
muscles that control movement. In this study, we tried to investigate genetic variants in muscular dystrophy using sequencing of
whole exons.
Case Presentation: A family with two affected patients with muscular dystrophy was referred for genetic counseling followed by
exome sequencing testing on the proband. After filling out informed consent, blood samples were obtained from each available
family member. Candidate genetic variant was confirmed using Sanger sequencing.
Conclusions: Exome data analysis revealed a variant of c.2864 + 1G > A in the proband, which altered the exon-intron 26 splice
site within the DYSF gene. Genetic changes in this gene are known to be associated with muscular disorders, such as limb-girdle
muscular dystrophy and other dysferlinopathies. Assessment of this genetic variant in the patient’s sister also showed homozy-
gous variant. Since the patient’s sister was married to her cousin, the same variant was tested in her husband, which was normal
homozygous. NGS-based techniques, including whole-exome sequencing, can identify the molecular genetic basis of the disease
in families with limb-girdle muscular dystrophy. The results can be helpful in identifying potential carriers in the family and in
prenatal diagnosis to the families involved.
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1. Introduction

Muscular dystrophy is a degenerative muscle disease
in which the muscles that control movement progressively
weaken (1). It occurs when one of the genes responsible for
the production of proteins involved in myocytes, ion chan-
nels, etc., is defective (2). Muscular dystrophies or dysfer-
linopathies are hereditary disorders that over time engage
the patient’s various muscles and gradually reduces the
ability of the muscle to repair itself by stem cells (3). Limb-
girdle muscular dystrophies (LGMDs) are heterogeneous
disorders characterized by the weakness of the pelvic and
shoulder girdle muscles (4).

Due to genetic heterogeneity and limited data about
LGMD genetic makeup in our country, we aimed to in-
vestigate the genetic variants in muscular dystrophy us-
ing whole-exome sequencing technique following bioin-

formatics analysis.

2. Case Presentation

We first identified a family who was referred for ge-
netic counseling for muscular dystrophy. Two members
of this family were affected (Figure 1). Their parents had
a consanguineous marriage, and these two affected mem-
bers had weakness of the proximal lower limbs. In the
proband, not only weakness of proximal upper limbs but
also proximal lower limbs were involved. In the affected
individuals, serum creatine kinase (CK) was elevated (ref-
erence range: 25 - 200 U/L). The severity of the disease
was higher in the patient (proband) at the time of study
than the newly-affected sister, such that the proband was
wheelchair-bound.
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Figure 1. The pedigree of the referred family. The arrow shows the proband. All the
black shapes show the affected individuals.

After a physical examination and laboratory test-
ing, due to the probability of a genetic cause and to
find the responsible variant, the whole-exome sequenc-
ing (WES) technique was requested for the proband. All
the participants signed an informed consent. Then, 3
mL of peripheral blood was obtained within the EDTA
tubes from all family members. DNA was extracted
using standard salting-out protocol. Proband’s DNA
sample was sent for exome sequencing (Macrogen, Ko-
rea). Data were analyzed, and candidate variants were
assessed through online bioinformatics tools and ge-
nomic databases such as Varsome (https://varsome.com/)
and ClinVar (www.ncbi.nlm.nih.gov/clinvar), respectively.
Moreover, variant frequencies were assessed according to
the frequencies reported in genomic databases, such as
1000 Genomes Project and ExAC+. For the validation of can-
didate variants, family co-segregation analyses were per-
formed using Sanger sequencing. Using the online soft-
ware Primer3 Plus, forward and reverse primers were de-
signed for the candidate variant. All the amplified prod-
ucts were prepared in a final volume of 25 µL for Sanger
sequencing (Kawsar Biotech Co., Tehran, Iran). The results
were analyzed using CLC workbench 7.7 software.

The results of the exome data analysis revealed a vari-
ant of c.2864 + 1G > A in the patient, which altered the
exon-intron 26 cleavage site in the DYSF gene (Table 1). The
assessment of candidate variants in several online predic-
tion tools and databases showed its pathogenicity (Table
1). Genetic changes in this gene are known to be associ-
ated with muscular disorders such as LGMD and other dys-
ferlinopathies. The examination of this genetic variant in
the patient’s sister also showed homozygous mutations.

Since the patient’s sister was married to a cousin, her hus-
band was also tested for the variant, which was negative
(healthy).

3. Discussion

Here, we reported two LGMD patients and identified
the splice site variant. Since the patients’ parents were first
cousins, the family showed an autosomal recessive inheri-
tance pattern. Based on the bioinformatics predictions us-
ing online tools, this nucleotide change at the splice site
may have a deleterious effect on mRNA splicing and the
subsequent protein product.

The diagnosis of LGMD may be challenging because
no specific biochemical or protein assays are available (5).
Dysferlinopathies generally manifest in the late teenage
years or primary adulthood. The advancement of dysfer-
linopathies is usually slow, and most patients lose their
ability to walk and run in the second decade or later. The
Dysferlin gene placed at chromosome 2p13.1-p13.3, and mu-
tations in this gene cause limb-girdle muscular dystrophy
(LGMD) type 2B. Dysferlin protein is commonly expressed
in the skeletal muscle, but in affected patients, it is re-
duced or absent. There are two different types of LGMDs,
one is the autosomal dominant, which is called type 1, and
the other one is autosomal recessive, that is called type
2. The recessive types are more widespread than domi-
nant ones. The classic form of LGMD type 2B comes with
some symptoms like weakness and atrophy in proximal
muscles, but some phenotypic variants of this disease and
other dysferlinopathies have been described (6). Former
cohorts of LGMD done in North China and Northeast China
reported that the most common LGMD subtypes were dys-
ferlinopathies (49.52, 38.46%) and LGMD 2A (24.76, 46.15%),
followed by sarcoglycanopathies (9.52, 7.69%) and LGMD 1B
(6.67, 0%) (7, 8). The frequency of sarcoglycanopathies is dif-
ferent greatly among regions, and the top four LGMD sub-
types in Korea did not include sarcoglycanopathies (9, 10).

Apparently, the lack of dysferlin might affect the im-
munity system. Other authors recommend that splice site
mutations in dysferlin might cause a phenotype that is re-
lated to muscle inflammation (11).

As exome sequencing clinical usage becomes more
widespread, the time to diagnosis is decreasing signif-
icantly, resulting in improved treatment strategies and
management of genetic disorders. A study reported
in 2020 demonstrated that AMP-activated protein kinase
(AMPK) γ1 plays a key role in fixing the plasma membrane,
and AMPK is essential for possible treatments (12). Another
recent study on Korean populations demonstrated that
the most common pathogenic variants are nonsense mu-
tations for dysferlinopathies, and about 50% of the stud-
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Table 1. Summary of the Candidate Variant Properties

Gene Variant
Nucleotide

change
Location Zygosity

Prediction Database Frequency

Mutation
Taster

ClinVar Genome AD ExAC

DYSF rs199954546 c.2864 + 1G > A Intron26 Homozygote Disease causing Pathogenic/likely
pathogenic

0.00001 0.00001

ied patients had one nonsense variant. The Korean study
concluded that a small molecule drug called Ataluren,
which promotes the readthrough of immature termina-
tion codon, may be helpful for dysferlinopathies and other
muscle-related disorders caused by nonsense mutation
(13).

In sum, we described two Iranian LGMD2B patients
with recessive mutations in the DYSF gene that is highly
disease-causing according to the ACMG criteria. NGS-based
techniques such as whole-exome sequencing can identify
the molecular genetic basis of the disease in families with
limb-girdle muscular dystrophy. The results can be helpful
in identifying potential carriers in the family and in prena-
tal diagnosis to the families involved. Exome sequencing
that has recently been merged into the medical genetic di-
agnostic area has already identified the role of more than
thousands of genes, especially in Mendelian disorder.
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