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Abstract

Background: The clinical manifestations of amyloid cardiomyopathy (AC) are not specific; therefore, AC is often misdiagnosed as
hypertrophic cardiomyopathy (HCM) or hypertensive heart disease (HHD). A differential diagnosis of these three conditions is often
necessary in the clinical setting.
Objectives: To investigate the differential diagnostic performance of radiomic analysis, based on cardiac magnetic resonance (CMR)
native T1 mapping images for the left ventricular hypertrophy (LVH) etiologies.
Methods: This retrospective, case-control study was conducted on 91 participants (68 males and 23 females; mean age: 48 ± 13
years), including 22 patients with HHD, 27 patients with AC, 28 patients with HCM, and 14 controls in Tongji Hospital (Wuhan, China).
All participants underwent 3.0T CMR imaging. Besides, radiomic analyses were performed using T1 mapping images. The cases
were divided into training and test datasets using a random seed. Next, the models were constructed with the training dataset and
evaluated with the test dataset.
Results: A total of 1,033 radiomic features were extracted in this study. Overall, 11, 28, 19, and eight features were selected to construct
the basal T1 mapping, mid-chamber T1 mapping, apical T1 mapping, and multi-module conjoint models, respectively. Optimal per-
formance was reported in the mid-chamber and basal T1 mapping models. The area under the curve (AUC), precision, recall, and
F1 score were 0.96, 0.84, 0.82, and 0.83 for the mid-chamber T1 mapping model and 0.96, 0.90, 0.89, and 0.88 for the basal T1 map-
ping model in the independent test dataset, respectively. The lowest diagnostic performance was observed in the apical T1 mapping
model. The AUC, precision, recall, and F1 score of the apical T1 mapping model were 0.86, 0.71, 0.70, and 0.70 in the independent test
dataset, respectively.
Conclusions: The radiomic analysis of T1 mapping could accurately distinguish the three causes of myocardial hypertrophy, includ-
ing HCM, HHD, and AC. It may be also a suitable alternative to late gadolinium enhancement-CMR.
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1. Background

The left ventricular hypertrophy (LVH) is a myocar-
dial change, caused by several cardiovascular diseases.
There are two major types of non-ischemic cardiomyopa-
thy, which are responsible for LVH, including hypertrophic
cardiomyopathy (HCM) and hypertensive heart disease
(HHD) (1, 2). Amyloid cardiomyopathy (AC) is often misdi-
agnosed as HCM or HHD due to the lack of specific clinical
manifestations (3). Therefore, it is often essential to make a
differential diagnosis of these three conditions in the clin-
ical setting.

Considering the limitations of endomyocardial biopsy
(EMB), differential diagnosis usually relies on non-invasive
examinations, such as electrocardiography (ECG), echocar-

diography, and cardiac magnetic resonance (CMR) imag-
ing. In particular, late gadolinium enhancement (LGE)-
CMR is a common method for diagnosis of myocardial fi-
brosis and myocardial extracellular deposition. However,
there are some limitations to LGE-CMR. Patients with se-
vere renal impairment or gadolinium allergy cannot ben-
efit from gadolinium-based contrast agents (4-6). Besides,
gadolinium administration is currently subject to contro-
versy due to the detection of gadolinium deposits in the
human brain despite normal renal function (7). Therefore,
development of a gadolinium-free method for identifying
the three mentioned diseases is essential.

Recently, native T1 mapping has been proposed as a
gadolinium-free imaging technique with high diagnostic
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sensitivity and accuracy for detecting early myocardial dis-
ease and comparable diagnostic performance to LGE-CMR
(8-14). Previous studies have shown that native T1 value
can distinguish HCM, HHD, and AC patients from control
healthy individuals (15-17). Evidence shows that the diag-
nostic performance of T1 mapping can be improved by us-
ing radiomics (18, 19); however, there is relatively scarce re-
search in the literature. Therefore, this study aimed to ex-
plore the radiomics of T1 mapping for the differential diag-
nosis of HCM, HHD, and AC.

2. Objectives

This study aimed to investigate the diagnostic perfor-
mance of radiomic analysis based on CMR native T1 map-
ping for the differential diagnosis of HCM, HHD, and AC.

3. Methods

3.1. Patients

This retrospective, case-control study was approved by
the local institution review board (IRB). A total of 135 pa-
tients with LVH, caused by non-ischemic cardiomyopathy,
were recruited from April 2018 to April 2019 in Tongji Hos-
pital, Wuhan, China. The inclusion criteria for HCM were
as follows: (1) maximum wall thickness of the left ventricle
(LV)≥ 15 mm in adults without a family history of HCM or
≥ 13 mm in adults with a family history of HCM, without
other diseases causing LVH; and (2) a normal LV cavity size
(19).

Besides, the inclusion criteria for HHD were as follows:
(1) LV cavity dilation; (2) LV maximum wall thickness≥ 12
mm; (3) diagnosis of arterial hypertension in the absence
of severe chronic kidney disease; and (4) lack of other car-
diac diseases, such as valvular heart disease or acquired
cardiomyopathies (2, 20). Also, the inclusion criteria for
AC were as follows: (1) diagnosis of multiple myeloma by
pathology or amyloidosis in other organs shown by biopsy;
(2) CMR indicating LVH and late myocardial enhancement
(subendocardial enhancement or diffuse dusty enhance-
ment); and (3) an echocardiogram suggesting cardiac in-
volvement (21, 22).

On the other hand, the exclusion criteria were as fol-
lows: (1) lack of T1 mapping image or incomplete T1 map-
ping data; (2) poor image quality; and (3) ITK-SNAP appli-
cation failure in delineating the regions of interest (ROIs).
Finally, 77 patients were enrolled in this study (Figure 1).
Besides, 14 consecutive healthy volunteers, without a car-
diovascular disease history or positive findings on electro-
cardiography, echocardiography, or CMR, were enrolled as
controls.

3.2. CMR T1 Mapping and LV Short-Axis Cine Sequence Imaging

Cardiac MRI was performed using a 3.0 T scanner
(Skyra, 2013, Siemens Healthineers, Erlangen, Germany)
with an 18-channel cardiac coil. Native T1 mapping was per-
formed, using an ECG-gated pre-contrast modified look-
locker inversion recovery (MOLLI) sequence. The detailed
imaging parameters were as follows: echo time (TE), 1.07
ms; repetition time (TR), 2.58 ms; field of view (FOV), 320-
360 mm; matrix size, 192 × 144; flip angle (FA), 35; slice
thickness, 6 mm (72 segments); minimum inversion time
(TI), 100 ms; TI increment, 80 ms; GRAPPA acceleration fac-
tor, 2; and imaging window, 136 ms.

The LV short-axis cine imaging was performed using a
true fast imaging with steady-state precession (True-FISP)
sequence from the apex to the base. The detailed imaging
parameters were as follows: TE, 1.39 ms; TR, 2.50 ms; FOV,
320-360 mm; matrix size, 192× 146; FA, 47[U+25E6]; slice
thickness, 6 mm; and slice gap, 2 mm. The cardiac func-
tion and global T1 value derived from CMR were processed
in cvi42. Version 5.10 (Circle Cardiovascular Imaging Inc.,
Calgary, Canada).

3.3. Segmentation

Three T1 mapping images at the apical, mid-chamber,
and basal levels of the LV (apical T1 mapping, mid-chamber
T1 mapping, and basal T1 mapping, respectively) were se-
lected from each participant for further radiomic analy-
ses. The ROIs of the LV myocardium in different slices
were manually delineated ROIs in ITK-SNAP software. All
ROIs were carefully drawn to distinguish the boundary be-
tween the endocardium and blood pool and between the
epicardium and extracardiac fat and to exclude trabecula-
tions and papillary muscles (Figure 2).

3.4. Extraction of Radiomic Features

A radiomic analysis was performed in RadCloud plat-
form (Huiying Medical Technology Co., Ltd., China). Ow-
ing to inconsistent pixel spacing for the participants, the
images and contours were isotropically resampled. The
radiomic features used in this study included 1033 two-
dimensional descriptors extracted from each ROI automat-
ically. These features can be categorized into first-order,
shape- or size-based, texture, and higher-order statistics.

3.5. feature Selection

The dataset was split into two training and test datasets
using a random seed, with 80% of data assigned to the
training set (i.e., 17 HHD, 21 AC, and 22 HCM cases) and 20%
to the test set. To reduce the redundancy and dimension-
ality of the features, the SelectKBest and the Least Absolute
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Figure 1. The Flowchart of Patient Enrollment

Shrinkage and Selection Operator (LASSO) algorithm meth-
ods were applied for selecting the best predictive features
from the radiomic feature set. The relevance of the fea-
tures and labels was evaluated by the SelectKBest method,
and the top-K features were retained. Features with non-
significant relevance (P>0.05) were removed to minimize
the LASSO cost function and retain all significantly relevant
features. The cost function used in the Lasso algorithm was
as follows:

(1)min
w

1

2n
‖ Xw − y ‖22 + α ‖ w ‖1

where X refers to the matrix of the radiomic feature, y
is the vector of the sample label, n denotes the number of
samples, w represents the coefficient vector of the regres-
sion model, and α‖ w ‖1 denotes the LASSO penalty with a
constantα-value and `1-norm of coefficient vector ‖ w ‖1.

Data processing was performed in the following steps.
First, all radiomic features were standardized to a mean
of zero with a variance of one. Second, a ten-fold cross-
validation was carried out based on the abovementioned
standardized features, and the optimal alpha value was de-
termined according to the minimum mean square error af-
ter 2000 iterations. Finally, relevant features were selected
based on the best α-value, and the coefficients were calcu-
lated for each feature.

3.6. Classification and Evaluation of the Models

The predictive performance of the models was assessed
in the test dataset, with the same thresholds as the training
dataset. Four radiomic-based models were established for
each T1 mapping image (basal T1 mapping, mid-chamber
T1 mapping, and apical T1 mapping), as well as a multi-
module conjoint analysis in a random forest (RF) model,
based on the corresponding set of radiomic features to pre-
dict the cause of cardiovascular disease. The native T1 value
was also evaluated as a predictive model for the three dis-
eases, with cut-off values from previous research (23). The
area under the curve (AUC), precision, recall, and F1 score
were calculated as follows:

Precisioncategory= TP/(TP+FP)
Recallcategory= TP/(TP+FN)
F1 scorecategory= 2 × Precision × Re-

call/(Precision+Recall)
where TP (true positive) represents positive cases,

which are predicted as positive by the model; TN (true neg-
ative) represents negative cases, which are predicted as
negative by the model; FP (false positive) represents nega-
tive cases, which are considered positive by the model; and
FN (false negative) represents positive cases, which are con-
sidered negative by the model. Precision indicates the per-
centage of correct positive predictions, and recall indicates
the percentage of actual positives identified by the model.
The F1 score is the harmonic mean of precision and recall.

A receiver operating characteristic (ROC) curve analy-
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Figure 2. The left panels show a set of cardiac MRI T1 mapping images in a 54-year-old patient diagnosed with HCM: a) short-axis T1 mapping image at the basal level; d) short-
axis T1 mapping image at the mid-chamber level; and g) short-axis T1 mapping image at the apical level. The middle panels show a set of ROIs drawn manually on the same
image: b) ROI and T1 mapping image at the basal level; e) ROI and T1 mapping image at the mid-chamber level; and h) ROI and T1 mapping image at the apical level. The right
panels only show the corresponding ROIs: c) ROI in the base; f) ROI in the mid-chamber; and i) ROI in the apex.

sis shows how well a model can classify binary outcomes.
The ROC curve is generated by plotting the false positive
rate of a model against its true positive rate for each pos-
sible cutoff value. The AUC is calculated and used as a
metric to show how well a model can classify the data
points. Different from a two-classifier model, the perfor-
mance of multi-classifier models needs to be evaluated

by using macro- or micro-average measures. The similar
sample size of each class in our study made the macro-
and micro-average measures applicable. In the study, the
macro-average method was selected to evaluate the classi-
fication performance of the models. The macro-average of
each indicator was calculated as the mean of each calcula-
tor for each category. For example, precision was measured
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as follows:
Precision = (PrecisionHHD + PrecisionAC +

PrecisionHCM)/3
A similar measurement method was applied for the

other three indicators.

3.7. Statistical Analysis

Statistical analysis was performed in SPSS Version 18.0
(IBM, Armonk, NY, USA). All quantitative variables are ex-
pressed as mean ± standard deviation (SD). All categori-
cal variables are expressed as frequency and percentage.
All variables were examined for a normal distribution us-
ing Shapiro-Wilk test. Also, all variables were assessed for
homogeneity of variance using Levene’s test. Quantita-
tive variables with homogeneity of variance (i.e., age, heart
rate, systolic blood pressure, and LV end-diastolic volume)
were analyzed using one-way ANOVA, with the post-hoc
least significant difference (LSD) test. Kruskal-Wallis test
was also performed for variables without homogeneity of
variance (i.e., diastolic blood pressure, LV ejection fraction,
and native T1 value). Moreover, Chi-square test was used for
categorical variables (i.e., sex). P value less than 0.05 was
considered statistically significant.

4. Results

The general characteristics of the patients are pre-
sented in Table 1. Comparison of the groups (two-by-two)
is shown in Appendix 1 and 2. Comparison of sex dis-
tribution and mean age of the training and test datasets
did not show any significant differences (mean age: 49.4
± 15.1 and 52.4 ± 15.1 years, respectively, P = 0.305; male
percentage: 44 [73%] and 14 [82%], respectively, P = 0.105).
For the radiomic feature extraction, a total of 1033 ra-
diomic features were successfully extracted for each ROI of
the three groups from CMR T1 mapping images of the LV.
Based on the LASSO method, 11, 28, 19, and eight features
were retained for further modeling of basal T1 mapping,
mid-chamber T1 mapping, apical T1 mapping, and multi-
module conjoint imaging, respectively. The details of these
features are shown in Table 2.

The native T1 value showed a significant difference be-
tween the four groups (HCM: 1304 ± 42, HHD: 1309 ± 62,
AC: 1449± 68, controls: 1243± 42; P < 0.001). The AUC for
the performance of the native T1 model in the differential
diagnosis of the three diseases was 0.72 (0.618-0.825). Also,
precision was measured to be 0.61, recall was estimated at
0.63, and the F1 score was 0.62 (Table 3). The ROC curve is
presented in Figure 3.

The performance parameters of the native T1 model for
the differential diagnosis of the three diseases were as fol-
lows: AUC, 0.72 (95% CI: 0.618-0.825); precision, 0.61; recall,

0.63; and F1 score, 0.62) (Table 3). The ROC curves of ra-
diomic analysis are shown in Figure 4. For the radiomic
analysis, the best model was the mid-chamber T1 mapping
model, with AUCs of 1 (95% CI: 0.991-1.000) and 0.96 (95%
CI: 0.894-1.000) for the training and test datasets, respec-
tively. Conversely, the lowest diagnostic performance was
attributed to the apical T1 mapping model, with AUCs of
0.99 (95% CI: 0.986-1.000) and 0.86 (95% CI: 0.660-0.997)
for the training and test sets, respectively.

5. Discussion

This retrospective study revealed that radiomic mod-
els of T1 mapping could differentiate the three diseases as-
sociated with LVH simultaneously. The diagnostic perfor-
mance of these models was superior to that of the native
T1 value. The radiomic analysis of the mid-chamber T1 map-
ping model was confirmed as the best model. Overall, the
radiomic analysis of T1 mapping demonstrated the favor-
able diagnostic performance of radiomic models.

In this regard, Yu et al. demonstrated that an
echocardiography-based textural analysis may discrimi-
nate HCM and HHD with an AUC of 0.85 (24). Moreover,
Neisius et al. demonstrated that the radiomic analysis of T1
mapping could discriminate HCM and HHD with an AUC of
0.86 (19). In the present study, a higher AUC was reported.
Our results also showed that the radiomic models could
distinguish AC from HCM and HHD. Therefore, radiomic
models based on T1 mapping can be potential biomarkers
for distinguishing the three causes of myocardial hyper-
trophy.

Moreover, in this study, the diagnostic performance of
native T1 value in distinguishing AC, HCM, and HHD re-
sponsible for LVH was confirmed. The AUC, precision, re-
call, and F1 score were 0.72, 0.61, 0.6, and 0.62, respectively,
which were lower than those of the radiomic models. Ac-
cording to the results, the performance of radiomic mod-
els improved significantly. This may be due to the fact that
T1 value is only a feature of T1 mapping images, and ra-
diomics can present the hidden information of T1 mapping
images, provide more valid and reliable information, and
help establish a more accurate diagnosis. The results re-
ported by Ulf Neisius et al,also confirmed this finding (19).
Overall, the results of the present study demonstrated that
the radiomic analysis could improve the diagnostic perfor-
mance of CMR and help physicians make a better diagno-
sis in clinics; therefore, it has a high practical value and a
broad application prospect.

The present results confirmed that the radiomic analy-
sis of mid-chamber and basal T1 mapping models was more
helpful than the multi-module conjoint model in distin-
guishing HCM, HHD, and AC. Although HCM, HHD, and AC
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Figure 3. The ROC curve for diagnosis of three diseases associated with left ventricular hypertrophy (LVH) based on the native T1 value. The micro-average ROC refers to the
diagnostic ability of the multi-module model, calculated by the micro-average method. The macro-average ROC refers to the ROC curve analysis of the multi-module model,
calculated by the macro-average method. Class 0 in the ROC curve analysis refers to the diagnostic ability of the multi-module model for HHD. Class 1 in the ROC curve analysis
refers to the diagnostic ability of AC in the multi-module model. Class 2 in the ROC curve analysis refers to the diagnostic ability of the multi-module model for HCM.

Figure 4. The ROC curve of four radiomic models for the differential diagnosis of three LVH-associated diseases in the test dataset. The micro-average ROC refers to the
diagnostic ability of the multi-module model, calculated by the micro-average method. The macro-average ROC refers to the ROC curve of the multi-module model, calculated
by the macro-average method. Class 0 in the ROC curve analysis refers to the ROC curve of the multi-module model for HHD. Class 1 in the ROC curve analysis refers to the ROC
curve of the multi-module model for AC. Class 2 in the ROC curve analysis refers to the diagnostic ability of the multi-module model for HCM.
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Table 1. The General Characteristics and Cardiac MRI Findings of the Patients

Total (N = 91) HCM (N = 28) HHD (N = 22) AC (N = 27) Controls (N = 14) P Value

Age (years), mean ± SD 48 ± 13 42 ± 13 a 47 ± 14 a 57 ± 11 45 ± 10 a 0.001

Sex (male), No. (%) 68 (75%) 19 (68%) a 20 (91%) a 20 (74%) 9 (64%) a < 0.001

Heart rate (beats/min), mean ± SD 84 ± 14 90 ± 13 b c 82 ± 12 84 ± 16 80 ± 9 0.088

Systolic blood pressure (mmHg), mean ± SD 137 ± 32 141 ± 24 b a c 175 ± 26 c 117 ± 21 b 114 ± 13 < 0.001

Diastolic blood pressure (mmHg), mean ± SD 88 ± 19 88 ± 12 b a 110 ± 20 c 74 ± 12 b c 83 ± 10 < 0.001

CMR < 0.001

LV end-diastolic volume (mL), , mean ± SD 143 ± 46 133 ± 26 b 177 ± 45 c 125 ± 57 b 145 ± 21

LV ejection fraction (%)„ mean ± SD 55 ± 14 64 ± 8 b a 48 ± 15 c 47 ± 13 c 65 ± 10

Native T1 (ms), mean ± SD 1340 ± 93 1304 ± 42 a c 1309 ± 62 a c 1449 ± 68 c 1243 ± 42

Abbreviations: CMR, Cardiac magnetic resonance; HCM, Hypertrophic cardiomyopathy; HHD, Hypertensive heart disease; AC, Amyloid cardiomyopathy; LV, Left ventric-
ular; P value is calculated for the four groups.
a Significant difference versus AC.
b Significant difference versus HHD.
c Significant difference versus the controls.

Table 2. The Selected Radiomic Features in the Four Radiomic Models

Model Features No.

Basal T1 mapping Original_shape2D_MajorAxisLength, original_shape2D_MinorAxisLength, original_shape2D_MaximumDiameter,
squareroot_firstorder_10Percentile, exponential_glcm_ClusterTendency, bp-2D_glcm_JointEntropy,
exponential_glrlm_GrayLevelNonUniformity, exponential_glszm_SizeZoneNonUniformity
lbp-2D_glrlm_RunLengthNonUniformity, wavelet-HH_firstorder_Kurtosis, original_glszm_ZoneEntropy

11

Mid-chamber T1 mapping Original_shape2D_MajorAxisLength, original_shape2D_MinorAxisLength, gradient_glcm_Imc2
squareroot_gldm_LargeDependenceHighGrayLevelEmphasis, squareroot_glrlm_GrayLevelNonUniformity,
square_glszm_LargeAreaHighGrayLevelEmphasis gradient_glszm_SmallAreaLowGrayLevelEmphasis,
square_glszm_GrayLevelVariance square_glcm_Idmn, logarithm_ngtdm_Contrast, squareroot_glcm_InverseVariance,
square_ngtdm_Contrast, gradient_ngtdm_Coarseness, square_firstorder_Skewness, square_firstorder_Range,
gradient_glrlm_HighGrayLevelRunEmphasis, gradient_gldm_GrayLevelVariance, wavelet-HL_firstorder_Median,
wavelet-HL_glcm_Imc1, wavelet-HL_firstorder_Mean, lbp-2D_firstorder_10Percentile, wavelet-LL_firstorder_Median,
wavelet-LL_firstorder_Minimum, wavelet-LL_gldm_SmallDependenceLowGrayLevelEmphasis, wavelet-LH_glcm_Correlation,
wavelet-LH_glrlm_RunEntropy, wavelet-LL_glszm_SmallAreaLowGrayLevelEmphasis,
original_glszm_GrayLevelNonUniformityNormalized

28

Apical T1 mapping Gradient_firstorder_Kurtosis, original_shape2D_MajorAxisLength, logarithm_firstorder_Uniformity,
logarithm_glcm_JointEnergy, lbp-2D_glcm_JointEntropy, lbp-2D_glcm_DifferenceEntropy, lbp-2D_glcm_SumEntropy,
gradient_glcm_Idmn, gradient_firstorder_RobustMeanAbsoluteDeviation, wavelet-LL_firstorder_10Percentile,
lbp-2D_firstorder_Variance, wavelet-LL_glszm_GrayLevelNonUniformity, wavelet-LH_glcm_Imc1,
wavelet-LL_ngtdm_Coarseness, lbp-2D_firstorder_Entropy, wavelet-LH_glcm_Idn, wavelet-LH_firstorder_Kurtosis,
wavelet-HL_firstorder_Median, wavelet-HH_glcm_MaximumProbability

19

Multi-module conjoint Gradient_firstorder_Kurtosis, original_shape2D_MinorAxisLength, original_shape2D_MajorAxisLength,
squareroot_firstorder_Maximum, original_shape2D_MaximumDiameter, squareroot_firstorder_90Percentile,
wavelet-LH_glcm_Idn, lbp-2D_glrlm_RunLengthNonUniformity

8

are all diffuse cardiomyopathies, T1 mapping at the LV api-
cal level is usually unstable because of technical limita-
tions, resulting in deviations in the radiomic data of the
multi-module conjoint model. This may be the reason why
the diagnostic performance of the multi-module conjoint
model was inferior to the mid-chamber and basal T1 map-
ping models.

The results also suggested that the overall analysis of
the myocardium might not be highly valuable in diffuse
cardiomyopathies. A multi-module conjoint analysis is not
imperative, and it may be efficient to examine the basal
and mid-chamber levels of the myocardium when dealing

with diffuse cardiomyopathies. Meanwhile, in the present
study, the mid-chamber T1 mapping was identified as the
best model due to two possible reasons. First, there are
no significant segment-to-segment differences at the mid-
ventricular level as compared to the apical and basal lev-
els (25); therefore, the native T1 value is more reliable at the
midventricular level than the apical and basal levels. Sec-
ond, the basal and apical slices are susceptible to respira-
tory and diaphragmatic movements, respectively.

There were some limitations in this study. First, the
sample size of the study was small, and a larger population
needs to be recruited and examined. Second, endomyocar-
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Table 3. The Classification Performance of Different Models

Model AUC (95% CI) Precision Recall F1 score

Conventional T1 value 0.72 (0.618-0.825) 0.61 0.63 0.62

Basal T1 mapping

Training 1 (0.998-1.000) 0.98 0.98 0.98

Test 0.96 (0.851-1.000) 0.84 0.82 0.83

Mid-chamber T1 mapping

Training 1 (0.991-1.000) 0.99 0.98 0.98

Test 0.96 (0.894-1.000) 0.90 0.89 0.88

Apical T1 mapping

Training 0.99 (0.986-1.000) 0.94 0.93 0.93

Test 0.86 (0.660-0.997) 0.71 0.70 0.70

Multi-module conjoint

Training 1 (0.983-1.000) 0.95 0.95 0.95

Test 0.90 (0.696-1.000) 0.77 0.77 0.77

dial biopsy was not performed for AC, which might have
caused some interferences. Third, all patients with AC en-
rolled in this study had amyloid light-chain (AL) amyloi-
dosis, and further examinations for amyloid transthyretin
(ATTR) collection and analysis were needed. Fourth, the na-
tive T1 values for HHD and HCM were in the same range,
which might have led to bias in diagnostic accuracy.

In conclusion, a radiomic analysis based on native T1
mapping could accurately distinguish HCM, HHD, and AC.
Therefore, it might be a suitable alternative to LGE for dif-
ferentiation of these three diseases.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML].
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