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Abstract

Background: Myonectin (CTRP15) is a newly discovered myokine with important metabolic functions. It was shown that circulating
myonectin levels decreased in obesity.
Objectives: The present study investigated the effect of 8 weeks of progressive resistance training (PRT) on serum myonectin levels
in rats following a high-fat diet plus sucrose solution.
Methods: A total of 32 male Wistar rats were randomly divided into high-fat diet plus sucrose (HFDS) and standard diet (SD) groups.
After 12 weeks, each group was divided into sedentary and training groups. The animals in training groups were subjected to a PRT
program (3 days/week, for 8 weeks). Flexor hallucis longus (FHL) and gastrocnemius muscle weights, epididymal and retroperi-
toneal fat weights, serum glucose, insulin, myonectin, and homeostasis model assessment of insulin resistance (HOMA-IR) were
measured in this study.
Results: The results of the study revealed that HFDS increased weight gain, fat weight, serum glucose, and HOMA-IR levels and
decreased muscle weights and serum myonectin levels. Eight weeks of PRT increased serum myonectin levels and FHL and gastroc-
nemius muscle weights and decreased retroperitoneal fat weight.
Conclusions: The results suggest that PRT may be an efficient intervention to enhance serum myonectin levels, which is associated
with the improvement of body composition.
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1. Background

A sedentary lifestyle and unhealthy dietary patterns
are the most important contributors to the worldwide
prevalence of obesity (1, 2). The evidence from human
and animal studies has shown that the excessive consump-
tion of sugar-sweetened beverages and high-fat diets con-
tribute to adiposity and have been associated with its
downstream cardiometabolic complications and obesity-
related metabolic disorders (3-6). However, numerous
studies have demonstrated that regular exercise training
can improve health and prevent the risk of obesity-related
diseases and mortality (7-9).

Weight loss and its maintenance are the greatest chal-
lenges in the treatment and management of obesity (10).
Among exercise interventions, aerobic exercise training
appears to be the most effective in the management of obe-
sity and its complications; however, progressive resistance
training (PRT) can play a distinct role in this regard. The
PRT can increase muscle mass, thereby elevating the rest-

ing metabolic rate. Furthermore, PRT may improve total
daily energy expenditure by increasing muscular strength
that may contribute to more physical activity (11). There-
fore, it seems that PRT can play an effective role in overcom-
ing these challenges.

Over the past decade, increasing evidence indicated
that skeletal muscle could regulate physiological and
metabolic pathways by releasing various bioactive sub-
stances, known as myokines (12). Muscle contractions
caused by exercise training may affect the production and
secretion of myokines in the bloodstream (13). Therefore,
PRT may influence the treatment and management of obe-
sity by altering the pool of available myokines.

Myonectin, also known as
Fam132b/erythroferrone/C1q/TNF-related protein 15
(CTRP15), is one of the newly discovered myokines that
plays an important role in regulating lipid and glucose
metabolism (14). Decreased myonectin levels have been
shown in obese subjects and type 2 diabetes patients
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(15). Myonectin expression in skeletal muscle and its
circulating levels are increased by endurance exercise
(16-19). There have been limited data on the effect of PRT
on myokines, especially myonectin.

2. Objectives

Considering the effectiveness of muscle contraction
in the synthesis and secretion of myokines, the current
study aimed at investigating the effect of PRT on serum my-
onectin levels on rats fed with a high-fat diet plus sucrose
solution.

3. Methods

3.1. Animals

A total of 32 male Wistar rats (187 ± 15 g, 6 - 8 weeks)
were obtained from Pasteur’s Institute, Tehran, Iran. The
Animals were housed in cages (four rats in each cage) and
maintained under controlled light/dark (12/12 h) and tem-
perature (22 ± 2ºC) conditions. After 1 week of acclima-
tion to their living conditions, the animals were initially
divided into two groups. One group (n = 16) followed a
standard diet (SD) (provided by Behparvar Co., Iran), and
the other group (n = 16) followed a high-fat diet (a stan-
dard diet with the addition of 12% blend oil) plus a 30%
(w/v) sucrose solution (HFDS) in water presented in a sec-
ond bottle (20, 21). The blend oil for cooking and salad was
obtained from Margarine Co., Iran. After 12 weeks of this
dietary intervention, each group was equally divided into
two groups (sedentary and resistance training).

3.2. Progressive Resistance Training Program

The PRT started 12 weeks after the beginning of the diet
program and lasted 8 weeks (one training session per day, 3
days/week). For the accomplishment of this PRT program,
a 1-meter ladder was used, which is inclined at 80°. The
rats climbed the ladder with weights attached to the base
of the tail with tape and clip. The PRT program in the first
and second days was accomplished with 50% of the rats’
body weight. The third session consisted of eight ladder
climbs (2 min of rest between the repetitions) while car-
rying progressively heavier loads. The first climb in this
session was accomplished with 50% of the animal’s body
weight. In the subsequent trials, 10% of the bodyweight
was added to the prior weight at the end of each trial. The
highest load was considered the rat’s maximum carrying
capacity (MCC). Subsequent training sessions consisted of
eight ladder climbs. During the first four ladder climbs,
the rats carried 50, 75, 90, and 100% of their previous MCC,

respectively (22). The subsequent ladder climbs were ac-
complished by adding 10% of body weight to the MCC of
the previous day. Therefore, the daily workload was in-
creased by 10%, compared to that of the previous day.

3.3. Sample Collection

After fasting overnight, 72 h after the last training ses-
sion, the animals were anesthetized with an intraperi-
toneal injection of ketamine (50 mg/kg) and xylazine (3 -
5 mg/kg). Approximately 6 mL of the blood was obtained
from the abdominal vena cava and centrifuged (3000 rpm;
4 °C; 15 min). The serum was immediately separated and
kept frozen at -20°C for further analysis. The flexor hallucis
longus (FHL) (i.e., the major muscle recruited in climbing
activity) and gastrocnemius (as synergist) muscles were
rapidly dissected from the right and left hindlimbs and im-
mediately weighed. Moreover, epididymal and retroperi-
toneal fats (as visceral white adipose tissue depots) were
collected and weighed (23).

3.4. Biochemical Measurements

Serum glucose was determined by an enzymatic-
colorimetric method (Pars Azmun Co., Tehran, Iran).
Enzyme-linked immunosorbent assay kits were used to as-
say insulin and myonectin (Hangzhou Eastbiopharm Co.,
China) concentrations. Homeostasis model assessment
of insulin resistance (HOMA-IR) scores were calculated us-
ing the following formula: HOMA-IR = [Insulin (mIU/L) ×
blood glucose (mmol/L)]/22.5 (2).

3.5. Statistical Analysis

All the values were checked for normality using the
Kolmogorov-Smirnov test. A two-way analysis of variance
was used to determine the main effects of the diet (SD vs.
HFDS), training status (sedentary vs. trained), and their in-
teractions. The Pearson correlation method was utilized
to examine the simple relationships between serum my-
onectin levels with other metabolic or body weight param-
eters. The statistically significant differences were consid-
ered in case of a P-value less than 0.05. All the data were
statistically analyzed using SPSS software (version 16.0).

4. Results

Initial and final body weights were not significantly
different between the groups (Figure 1). Weight gain (i.e.,
final body weight - initial body weight) was higher in HFDS
groups than that in the SD groups (P = 0.033; Table 1). The
weights of muscles (i.e., FHL and gastrocnemius) and fat
pads (i.e., epididymal and retroperitoneal) were expressed
as the percentage of body weight. The HFDS rats had
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lower FHL (P = 0.004) and gastrocnemius (P = 0.009) mus-
cle weights and higher epididymal and retroperitoneal fat
weights (P < 0.001) than SD rats (Table 1). The FHL (P <
0.001) and gastrocnemius (P = 0.013) muscle weights were
higher, and retroperitoneal fat weights were lower (P =
0.010) in trained groups than those in sedentary groups.

After 5 months, HFDS groups had higher serum glucose
levels (P < 0.001) and HOMA-IR (P < 0.001), compared to
SD groups (Table 2). The HFDS had no significant effects
on insulin concentration. Eight weeks of PRT did not sig-
nificantly affect the serum glucose and insulin concentra-
tions and HOMA-IR in SD and HFDS groups. Serum my-
onectin levels were lower in HFDS groups than those in SD
groups (P < 0.001; Table 2). Myonectin levels were higher in
trained groups than those in sedentary groups (P = 0.037).

This study examined the simple correlations between
serum myonectin levels and other metabolic or body
weight parameters (Table 3). Negative correlations were
observed between myonectin with glucose levels (r = -
0.627; P < 0.001) and HOMA-IR (r = -0.533; P = 0.003). There
was a positive correlation between serum myonectin con-
centration with FHL (r = 0.551; P = 0.002) and gastrocne-
mius (r = 0.573; P = 0.001) muscle weights. Additionally,
negative correlations were noticed between myonectin
levels with epididymal (r = -0.563; P = 0.001) and retroperi-
toneal (r = 0.642; P < 0.001) fat weights.

5. Discussion

In this study, it was observed that a high-fat diet with
sugar solution intake (for a long time; almost 5 months)
caused fasting hyperglycemia and elevated HOMA-IR levels
in male Wistar rats. Previous studies often used a sugar so-
lution or high-fat diet individually to induce the metabolic
syndrome model. Recently, Lozano et al. (2016) have in-
vestigated the effects of 2 and 8 months of fructose regu-
lar consumption, in combination or not with fatty food, on
the onset of metabolic syndrome and type 2 diabetes (25).
Lozano et al. noticed that only the combination of a fruc-
tose solution (25%) and a high-fat diet (21.4% fat) resulted
in long-term metabolic disorders.

In addition, in another study, the combination of a su-
crose solution (30%) and a high-fat diet (7.5% sunflower oil
added to standard diet) caused hyperglycemia and liver
steatosis in rats (21). The consequences of this type of diet
were weight gain, an increase in the fat pad, and a rela-
tive decrease in muscle mass. The diet used in the present
study, in accordance with the previous investigations (21,
25), led to weight gain, increased fat pad, and decreased
muscle mass.

The relative decrease in muscle mass due to obe-
sity can affect metabolism and other physiological sys-

tems. Skeletal muscle, by releasing soluble factors known
as myokines, can regulate physiological functions and
metabolic pathways in other tissues (13). Myonectin is one
of the newly discovered myokines identified as a nutrient-
sensitive myokine by Seldin et al. (2012) (16). In addition to
the physiological importance of myonectin in regulating
lipid metabolism, it has been suggested that this myokine
plays an important role in linking stress erythropoiesis to
iron mobilization in the liver in response to blood loss
or anemia (14). Furthermore, myonectin can reduce car-
diomyocyte apoptosis and macrophage inflammatory re-
sponse and plays a crucial role in preventing acute myocar-
dial ischemic injury (17). Therefore, changes in myonectin
circulating levels may affect a wide range of physiological
functions.

Dietary intervention in the present study decreased
serum myonectin levels, which is consistent with the re-
sults of a study by Seldin et al. (2012) (16). The current
study also demonstrated that 8 weeks of PRT increased this
myokine to an average level. Furthermore, negative corre-
lations were observed between myonectin concentration
with glucose level, HOMA-IR score, and fat weights and
positive correlations with FHL and gastrocnemius muscle
weights.

To date, few studies have investigated the effect of exer-
cise training on myonectin levels. In animal studies, volun-
tary running wheel for 2 weeks (16) and endurance tread-
mill exercise for 4 weeks (17) increased myonectin levels
in skeletal muscle and circulation in wild-type mice. In-
creased myonectin concentrations in the diaphragm mus-
cle of the lean and obese Zucker rats were observed after
9 weeks of aerobic exercises (18). Furthermore, in a human
study, 8 weeks of aerobic exercise training increased serum
myonectin levels in obese women (19).

Previous studies often focused on low to moderate aer-
obic exercises. In the present study, high-intensity pro-
gressive resistance training (HIPRT), mainly composed of
concentric contractions, was used to minimize the mus-
cle damage caused by eccentric exercises. Although the de-
tailed molecular mechanisms of the changes in circulat-
ing levels of myonectin by exercise training have not been
elucidated, the intensity of muscular contraction can be
an effective factor in the production and secretion of this
myokine from skeletal muscle tissue.

Seldin et al. (2012) indicated that myonectin expres-
sion was up-regulated by an increase in cellular cyclic
adenosine monophosphate (cAMP) or calcium levels (16).
Increased exercise intensity is associated with increased
intramuscular calcium and cAMP levels. Therefore, HIPRT
may be more effective than moderate- or low-intensity aer-
obic training in increasing myonectin levels.

In another study, it was shown that myonectin sup-
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Figure 1. Body weights of rats in three stages, including initial weight (before diet intervention), weight before progressive resistance training program, and final weight.
The values are expressed as mean ± standard deviation (n = 8 per group) (SS, standard diet sedentary; ST, standard diet training; HS, high-fat diet plus sucrose sedentary; HT,
high-fat diet plus sucrose training).

Table 1. Body, Muscle, and Fat Weights in Experimental Groups a

Variables
Standard Diet High-Fat Diet Plus Sucrose Two-Way ANOVA P-Values

Sedentary Trained Sedentary Trained Diet Training Interaction

Weight gain (g) b 235.6 ± 46.2 220.6 ± 22.9 262.9 ± 61.9 264.1 ± 38.0 0.033 0.666 0.610

FHL/body weight (%) 0.29 ± 0.02 0.33 ± 0.03 0.25 ± 0.02 0.30 ± 0.04 0.004 < 0.001 0.571

Gastrocnemius/body weight (%) 1.22 ± 0.08 1.27 ± 0.10 1.10 ± 0.08 1.21 ± 0.08 0.009 0.013 0.433

Epididymal fat/body weight (%) 1.43 ± 0.15 1.21 ± 0.14 1.97 ± 0.28 1.85 ± 0.53 < 0.001 0.159 0.657

Retroperitoneal fat/body weight (%) 1.23 ± 0.19 0.84 ± 0.18 2.13 ± 0.61 1.66 ± 0.56 < 0.001 0.010 0.786

Abbreviations: ANOVA, analysis of variance; FHL, flexor hallucis longus.
a Values are expressed as mean ± standard deviation (n = 8 per group).
b Weight gain = Final bodyweight - Initial body weight.

pressed autophagy in the liver by activating the mam-
malian target of rapamycin (mTOR) (26). Additionally,
other studies revealed that the mTOR complex plays a role
in muscle protein synthesis and skeletal muscle hypertro-
phy (27, 28). Therefore, mayonectin might play an im-
portant role in inhibiting muscle protein degradation in-
duced by obesity. In this regard, a positive correlation be-

tween myonectin levels and muscle mass was observed in
the present study.

5.1. Conclusion

The result of this study demonstrated that serum my-
onectin levels were decreased in obesity induced by dietary
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Table 2. Serum Concentrations of Myonectin Levels and Metabolic Parameters at the End of the Experiment a

Variables
Standard Diet High-Fat Diet Plus Sucrose Two-Way ANOVA P-Values

Sedentary Trained Sedentary Trained Diet Training Interaction

Serum glucose
(mg/dL)

105.6 ± 11.5 107.6 ± 23.8 149.7 ± 11.6 145.2 ± 24.7 < 0.001 0.857 0.646

Serum insulin
(mIU/L)

5.20 ± 0.32 4.72 ± 0.65 4.99 ± 0.79 5.36 ± 0.37 0.316 0.801 0.053

HOMA-IR 1.36 ± 0.21 1.22 ± 0.38 1.84 ± 0.30 1.91 ± 0.40 < 0.001 0.791 0.397

Myonectin
(ng/mL)

1.30 ± 0.13 1.34 ± 0.20 0.83 ± 0.21 1.08 ± 0.13 < 0.001 0.037 0.103

Abbreviations: ANOVA, analysis of variance; HOMA-IR, homeostasis model assessment of insulin resistance.
a Values are expressed as mean ± standard deviation (n = 8 per group).

Table 3. Simple Pearson Correlations Between Serum Myonectin Concentration and Other Variables at the End of the Experiment

Variables
Myonectin (ng/mL)

r P-Value

Glucose (mg/dL) -0.627 < 0.001

Insulin (mIU/L) -0.073 0.706

HOMA-IR -0.533 0.003

FHL/body weight (%) 0.551 0.002

Gastrocnemius /body weight (%) 0.573 0.001

Epididymal fat/body weight (%) -0.563 0.001

Retroperitoneal fat/body weight (%) -0.642 < 0.001

Abbreviations: HOMA-IR, homeostasis model assessment of insulin resistance; FHL, flexor hallucis longus.

intervention and increased by PRT to average levels. Conse-
quently, the results of the current study suggest that PRT
may be an efficient intervention to enhance serum my-
onectin levels, which is associated with an increase in mus-
cle mass and the improvement of body composition.
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